中俄合作

发布于: 2024-12-13 17:15
阅读: 5
分类: 合作伙伴

中俄研究院与俄罗斯圣彼得堡彼得大帝理工大学合作共建了《中俄科学技术联合创新中心》、《中俄功能材料国际联合实验室》、《中俄增材技术联合实验室》以及《中俄增材技术科教中心》;与俄罗斯科学院、远东联邦大学三方联合建立了《中俄工程技术联合研究中心》;与“圣彼得堡彼得大帝理工大学Andrey Ivanovich Rudskoy”及“俄罗斯科学院Yuri N. Kulchin”两位院士合作建立了《院士专家工作站》;与浙江大学《浙江大学研究生实践基地》;与哈尔滨工业大学合作建立了《动力电池与电控技术联合研究中心》;与湖南大学合作建立了《动力电池应用技术研究中心》;与奥地利STARD公司合作建立了《中奥电动汽车设计与高速电机技术开发中心》;与德国ZOZ Group合作建立了《粉体材料联合实验室》;与德国NETZSCH公司合作建立了《中德纳米新材料联合实验室? 等。

目前中俄新能源材料技术研究院合作在研课题项目包括:

多孔态聚合物锂离子动力电池(中/俄合作):

从设计上和材料上区别于传统的液态锂离子电池。采用有机无机复合材料膜技术,隔膜呈三维立体结构,形成高的孔隙率和扭曲度,吸液率更高保液率更好,整个电池体系无游离态电解质,利用高分子材料的高温低聚合特性,热蠕变性小,耐高低温变化强,大大提高了电池的安全性。研究电池产热机理,分析热效应,采用相分离制备多孔电极,提升比表面积,提高离子交换通道,大大缩短了锂离子的交换时间,提高了交换速度和交换量,降低了离子交换摩擦化学产热。同时,采用外嵌集流体技术,使集流体均匀分布最大程度降低了极化电阻,有效解决了大电流物理产热,集流体前处理技术有效解决活性物质剥落问题有效延长寿命;

新功能材料技术(中/俄合作):

动力电池材料方面,将建立完整的材料性能物化属性研究和微观测试分析对标能力,可追踪材料在电池的全生命周期和极限工况下的物化表征,实现对当前及下一代电池;

在船体材料领域,针对深海及远洋科考船深潜器的使用条件要求,开发出基于玻璃合金高性能船体材料,并完成试制、水下验证,深潜器材料应用于下潜11000米水下;

3D打印技术植入体医用材料领域,将力学相容性、生物相容性和植入安全性的多维度综合性能属性需求,分解为材料属性、制备工艺,具备完整的开发流程和能力。基于材料的相变优化和超细球化处理技术,结合激光融覆技术和表面纳米化处理技术,综合实现产品的卓越品质;3D打印技术及钛合金材料广泛应用于植入体骨骼及发动机关键部件等。

 

圣彼得堡彼得大帝理工大学简介:

圣彼得堡彼得大帝理工大学始建于1899年,五、六十年代又称加里宁工程学院,是一座历史悠久的理工科为主的综合大学,门捷列夫母校,该校的毕业文凭被世界所有国家承认,包括美国、英国等欧美国家,所以该校有许多攻读硕士和博士的外国学生,包括中国的留学生。该校有82名科学院或工程院院士,400名教授,1500名副教授,18000多名本国学生和1500多名外国留学生,也是俄罗斯最好的理工科大学之一。

该校设有13个系,70多个专业门类。多年来一直积极支持国际科技组织的各项工作,尤其是在材料、焊接、理论和应用力学、自动化控制、能量与电子网络等研究方面都在世界同一领域中起到了举足轻重的作用。该校还是俄罗斯技术大学联合会的重要组织者,是国际大学协会的成员,是荷兰国际教育领域合作组织成员,是圣彼得堡大学联盟成员(该联盟由4个国家21所大学组成,其中俄罗斯9所、美国8所、瑞士和英国各一所),是俄罗斯技术类大学中的顶峰级别的大学。

分享

推荐文章

  • 2025-01-18
    admin
    一、锂电池的发展方向 随着锂电池在电动汽车、智能手机等市场的应用不断扩大,对锂电池的要求也不段提高。未来锂电池的发展方向主要包括:能量密度的提高、安全性的提高、成本的降低等方面。   1.提高锂电池的能量密度 电池的能量密度指的是:单位体积或单位重量的电池所储存的电能。与液态电池和刀片电池相比,固态电池的能量密度最高。目前,锂电池的能量密度已经达到了较高的水平,但仍有进一步提高的空间,以进一步提高电池的续航能力。 2.提高锂电池的安全性和稳定性 锂电池的安全问题是当出现一些外力撞击或者内部短路以及一些不可控的安全事故时,电池在短时间内会发热,发热后的连环的链式反应是安全的最关键的问题。主要原因如图: 安全问题比较常见的发生于智能手机的充电过程发生爆炸。 固态电池就是一个很好的解决方案。如果采用固态电解质替代可燃的体系,就有可能实现链式反应的阻隔;还可以采用一些水系的溶剂,也可以实现阻隔。 3.提高锂电池的环保性 锂电池虽然不含铅镉汞等重金属污染,但报废的锂电池对环境仍有明显的危害性。锂电池中含有丰富...
  • 2025-01-06
    admin
    导读:正极材料是决定锂离子电池性能的关键材料之一,也是目前商业化锂离子电池中主要的锂离子来源,其性能和价袼对锂离子电池的影响较大。   正极材料是决定锂离子电池性能的关键材料之一,也是目前商业化锂离子电池中主要的锂离子来源,其性能和价袼对锂离子电池的影响较大。目前研制成功并得到应用的正极材料主要有钴酸锂、磷酸铁锂、锰酸锂、三元材料镍钴锰酸锂(NCM)和镍钴铝酸锂(NCA)等。   钴酸锂(LCO):适合小型电池,实际容量不高   钴酸锂是第一代商业化正极材料,在几十年的发展中逐渐改性和提高,可以认为是最成熟的锂离子电池正极材料。钴酸锂具有放电平台高、比容量较高、循环性能好、合成工艺简单等优点。但该材料含钴较多,成本较高。   钴酸锂仍是小型锂电池的最佳选择。目前在3C电子电池中,大多数仍使用钴酸锂而并非比容量更高的三元材料,原因是钴酸锂材料的压实密度大于三元材料,即单位体积内能容纳的钴酸锂量更多。在更为重视体积密度的小型电池中,钴酸锂占有着一席之地。   钴酸锂理论容量高,但实际...
  • 2024-12-13
    admin
    国创中心是科技部推动建设的第二个国家技术创新中心,也是首个国家级新能源汽车技术创新中心,通过整合全球资源推进新能源汽车共性、前沿关键技术的集成创新,目标是成为世界新能源汽车的技术创新策源地、技术标准的引领地、开放融合创新的示范地、汽车高端人才的聚集地。
  • 0572-630 1196
  • 返回顶部